Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua titik pada bidang koordinat, selain itu kita juga bisa menurunkan persamaan lingkaran.
Akan tetapi, penggunaan teorema pythagoras hanya dibatasi pada permasalahan yang melibatkan segitiga siku-siku. Teorema Pythagoras tidak berlaku untuk segitiga lancip atau segitiga tumpul, mengapa? Untuk itu, coba perhatikan penjelasan dibawah ini!

Apabila sisi siku-siku dari segitiga siku-siku dibuat lebih dekat (sudut yang diapit semakin kecil) jadi sudut siku-sikunya akan menjadi sudut lancip, maka akan diperoleh c2 < a2+ b2. Untuk membuat pertidaksamaan ini menjadi suatu persamaan, maka perlu mengurangkan a2 + b2 dengan nilai tertentu.
c2 = a2 + b2 – nilai tertentu
Sebaliknya, apabila sisi siku-sikunya dibuat lebih jauh (sudut yang diapit semakin besar) maka sudut siku-sikunya akan menjadi sudut tumpul, maka akan di peroleh c2 > a2 + b2. Untuk mendapatkan persamaan maka tambahkn nilai tertentu pada a2 + b2.
c2 = a2 + b2 + nilai tertentu
Nilai tertentu tersebut adalah 2ab.cos C. Rumus hasil modifikasi teorema Pythagoras ini disebut aturan cosinus.
1 Aturan Cosinus
1.1 Contoh Soal dan Pembahasan Aturan Cosinus Segitiga Trigonometri
Aturan Cosinus
Rumus untuk sembarang segitiga yang panjang sisi-sisinya a, b, c, dan C adalah sudut di hadapan sisi yang panjangnya c.
c2 = a2 + b2 – 2ab ∙ cos C
Karena nilai cos dari sudut tumpul adalah negatif, maka nilai 2ab ∙ cos C juga bernilai negatif. Sehingga pengurangan oleh 2ab ∙ cos C akan sama dengan penjumlahan oleh nilai positif.

Untuk menurunkan aturan cosinus pada segitiga lancip, perhatikan segitiga ABC dengan AD sebagai garis tinggi, yang ditunjukkan gambar di atas. Kita bisa menyebut panjang sisi-sisi di depan sudut A, B, dan C secara berturut-turut adalah a, b, dan c, tingginya adalah t, serta panjang sisi CD sebagai x. Panjang sisi BD merupakan hasil pengurangan panjang sisi BC oleh CD, yaitu a-x.
Dengan menggunakan teorema Pythagoras, maka bisa diperoleh dua persamaan tersebut. Dengan menggunakan aljabar, maka dapat menjabarkan bentuk (a-x)2.

Perhatikan kedua persamaan diatas, memuat x2+t2, yang diketahui sama dengan b2 dari persamaan 1. Substitusikan persamaan 1 ke persamaan 2.

Sekarang ganti x dengan bentuk yang memuat cos C. Dengan menggunakan segitiga ACD, maka dapat ditulis persamaan berikut dan menuliskan x dalam bentuk cos C.

Substitusikan persamaan 4 ke persamaan 3, maka diperoleh rumus aturan cosines:
c2 = a2 + b2 – 2ab cos C
Meski penurunan aturan cosinus dilakukan pada segitiga lancip, aturan ini juga berlaku pada segitiga tumpul. Selain itu, aturan cosinus juga bisa digunakan jika diketahui panjang 3 sisi segitiga atau panjang dua sisi segitiga dan besar sudut yang diapitnya (ss.ss.ss atau ss.sd.ss).
Contoh Soal dan Pembahasan Aturan Cosinus Segitiga Trigonometri
Contoh 1
Diketahui! Pada segitiga ABC, AB = 4 cm, BC = 6 cm dan AC = 7 cm. Nilai cos C = …
Jawab:

c2 = a2 + b2 – 2ab cos C
16 = 36 + 49 – 2.6.7 cos A
84 cos A = 69
cos A = 69/84
cos A = 23/28
Contoh 2 :
Diketahui! Pada jajaran genjang ABCD, ∠BAD = 60o. Jika AB = 16 cm dan AD = 10 cm maka panjang AC = …
Jawab :

Perhatikan gambar diatas!
∠BAC ≠ ∠CAD, sebab AB ≠ AD
Untuk mempermudah perhitungan tersebut, maka perpanjang garis AB

AC2 = AB2 + BC2 – 2 AB.BC cos 120°
AC2 = 162 + 102 – 2 16.10.(-1/2)
AC2 = 256 + 100 + 160
AC2 = 516
Contoh 3 :
Diketahui : Pada segitiga ABC, ∠A = 60o, AB = 7 cm, BC = √109 cm. Panjang AC = …
Jawab :

a2 = b2 + c2 – 2 bc cos 60o,
109 = b2 + 49 – 2.b.7.(1/2)
109 = b2 + 49 – 7b
b2 – 7b – 60 = 0
(b – 12)(b + 5) = 0
b = 12 atau b = -5
Jawaban yang memenuhi adalah AC = 12 cm
Demikian penjelasan tentang Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika . Semoga bermanfaat dan sampai jumpa pada postingan selanjutnya.
Artikel Paling Populer :
- Garis dan Sudut serta sifat-sifatnya Garis dan Sudut adalah bentuk dasar dalam geometri. Garis adalah gambar yang terdiri dari titik-titik tak terhingga yang membentang tanpa batas di kedua arah. Dengan kata lain, garis dibentuk oleh…
- Pengertian, Sifat, Jenis, Rumus dan Contoh Soal Trapesium… Pengertian, Sifat, Jenis, Rumus dan Contoh Soal Trapesium Beserta Jawaban Lengkap – Trapesium adalah bangun datar dua dimensi tang dibentuk oleh 4 rusuk diantaranta saliung sejajar namun tidak sama panjang.…
- Pengertian Ketidaksamaan Segitiga Sebelumnya Kami sudah membahas menganai pengertian dan jenis-jenis segitiga, sifat-sifat segitiga secara umum, dan juga sifat-sifat segitiga khusus (istimewa). Sekarang kita akan membahas bagaimana mengatahui suatu bangun tersebut berbentuk segitiga jika tidak…
- Keliling Segitiga: Rumus, Contoh Soal Jika didasarkan pada panjang sisi dan besar sudut, segitiga dibedakan menjadi beberapa macam. Menurut panjang sisinya dibedakan menjadi tiga jenis, yaitu segitiga sama sisi, segitiga sama kaki, dan segitiga sembarang.…
- Pengertian Bangun Ruang : Macam Macam Bangun Ruang,… Pengertian Bangun Ruang : Macam Macam Bangun Ruang, Penjelasan dan Rumusnya Lengkap – Dalam matematika membahas tentang bangun ruang. Apa itu bangun ruang? Agar lebih memahaminya, kita akan membahas tentang pengertian bangun…
- Sifat-Sifat Segitiga Secara Umum Kita sudah mengetahui pengertian dan jenis-jenis segitiga. Sekarang kita aka membahas mengenai sifat-sifat segitiga pada umum. Secara umum segitiga akan memeneuhi konsep ketidaksamaan segitiga, hubungan sudut dalam segitiga, dan hubungan sudut…
- Cabang-Cabang Matematika Cabang Matematika Cabang utama matematika adalah aljabar, teori bilangan, geometri dan aritmatika. Berdasarkan cabang-cabang ini utama ini cabang-cabang lain telah ditemukan. Sebelum munculnya zaman modern, studi matematika sangat terbatas. Namun seiring…
- Pengertian, Rumus, Cara Menghitung Panjang Busur, Luas… Pada sebuah lingkaran terdapat bagian yang disebut dengan busur, juring, dan tembereng. Busur adalah besaran pokok panjang, sedangkan juring dan tembereng adalah besaran turunan yang berupa luasan. Pada pembahasan kali kita akan membahaas…
- Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri… Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua titik pada bidang koordinat, selain itu kita juga bisa…
- Cara Menentukan dan Menghitung Rumus Luas dan Keliling… Mengetahui Rumus hitung Luas dan Keliling Pada Trapesium Lengkap dengan Contoh Soal dan Pembahasannya Trapesium merupakan bangun datar dua dmensi yang dibentuk oleh empat buah rusuk yang dua diantara rusuknya…
- Mengenal Rumus Luas Belah Ketupat Seperti kalian ketahui, belah ketupat adalah jenis jajar genjang khusus memiliki semua sisi yang sama satu sama lain. Sebuah belah ketupat dapat dibedakan dari persegi melalui ukuran sudut internalnya. Sudut…
- Hubungan Antarsudut (Pelurus, Penyiku, dan Bertolak… Pasangan Sudut yang Saling Berpelurus (Bersuplemen) Perhatikan gambar di bawah. Garis AB merupakan garis lurus, sehingga besar ∠AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga…
- Pengertian, Rumus, Cara Menghitung Panjang Busur, Luas… Pada sebuah lingkaran terdapat bagian yang disebut dengan busur, juring, dan tembereng. Busur adalah besaran pokok panjang, sedangkan juring dan tembereng adalah besaran turunan yang berupa luasan. Pada pembahasan kali kita akan membahaas tentang…
- Pengertian, Rumus Teorema Pythagoras dan Contoh Soal Teorema… Teorema Phytagoras adalah teori yang menunjukan antara sisi-sisi dalam segitiga siku-siku. Selain dalam matematika, Phytagoras juga digunakan dalam bidang ilmu lainnya seperti fisika, astronomi dan lain sebagainya. Phytagoras juga tidak…
- Jenis-jenis Trapesium Menurut sisi dan besarnya sudut pada trapesium, jenis trapesium dibedakan menjadi 3 jenis, yakni siku-siku, sama kaki, dan sembarang. Penjelasannya bisa dilihat dibawah ini. 1. Trapesium Siku-siku Trapesium siku-siku, merupakan…
- Cara Mencari Keliling Dan Luas Segitiga Tahukah Anda dengan "segitiga pengaman"? Menurut Wikipedia, segitiga pengaman merupakan suatu tanda yang berbentuk segitiga sama sisi yang berwarna merah yang digunakan untuk mengamankan tempat kecelakaan atau kendaraan mogok. Tanda ini dipasang di…
- Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan… Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan Contoh Soal Balok Beserta Cara Penyelesaian – Balok adalah bangun ruang 3 dimensi yang dibentuk oleh tiga pasang persegi atau persegi panjang dengan paling…
- Rumus Mencari Jari-jari lingkaran dan Contoh soal Pada kesempatan yang lalu, kita telah sama-sama belajar mengenai diameter lingkaran, Pada pembahasan kali ini juga akan masih berlanjut seputar lingkaran, yakni mengenai cara mencari jari – jari lingkaran. Mau…
- Pengertian, Sifat Dan Rumus Sudut Pusat Dan Sudut Keliling… Sudut pusat dan sudut keliling lingkaran adalah sudut yang dibentuk oleh dua buah tali busur atau dua bua jari-jari pada lingkaran. Jika kalian belum mengetahui apa yang dimaksud dengan sudut…
- Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam… Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam Matematika Perhatikan masalah yang di hadapi seorang peneliti sedang merancangsebuah wadah berbentuk balok dari bahan alumunium. Wadah tersebut harus mampu menampung…