Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua titik pada bidang koordinat, selain itu kita juga bisa menurunkan persamaan lingkaran.
Akan tetapi, penggunaan teorema pythagoras hanya dibatasi pada permasalahan yang melibatkan segitiga siku-siku. Teorema Pythagoras tidak berlaku untuk segitiga lancip atau segitiga tumpul, mengapa? Untuk itu, coba perhatikan penjelasan dibawah ini!

Apabila sisi siku-siku dari segitiga siku-siku dibuat lebih dekat (sudut yang diapit semakin kecil) jadi sudut siku-sikunya akan menjadi sudut lancip, maka akan diperoleh c2 < a2+ b2. Untuk membuat pertidaksamaan ini menjadi suatu persamaan, maka perlu mengurangkan a2 + b2 dengan nilai tertentu.
c2 = a2 + b2 – nilai tertentu
Sebaliknya, apabila sisi siku-sikunya dibuat lebih jauh (sudut yang diapit semakin besar) maka sudut siku-sikunya akan menjadi sudut tumpul, maka akan di peroleh c2 > a2 + b2. Untuk mendapatkan persamaan maka tambahkn nilai tertentu pada a2 + b2.
c2 = a2 + b2 + nilai tertentu
Nilai tertentu tersebut adalah 2ab.cos C. Rumus hasil modifikasi teorema Pythagoras ini disebut aturan cosinus.
1 Aturan Cosinus
1.1 Contoh Soal dan Pembahasan Aturan Cosinus Segitiga Trigonometri
Aturan Cosinus
Rumus untuk sembarang segitiga yang panjang sisi-sisinya a, b, c, dan C adalah sudut di hadapan sisi yang panjangnya c.
c2 = a2 + b2 – 2ab ∙ cos C
Karena nilai cos dari sudut tumpul adalah negatif, maka nilai 2ab ∙ cos C juga bernilai negatif. Sehingga pengurangan oleh 2ab ∙ cos C akan sama dengan penjumlahan oleh nilai positif.

Untuk menurunkan aturan cosinus pada segitiga lancip, perhatikan segitiga ABC dengan AD sebagai garis tinggi, yang ditunjukkan gambar di atas. Kita bisa menyebut panjang sisi-sisi di depan sudut A, B, dan C secara berturut-turut adalah a, b, dan c, tingginya adalah t, serta panjang sisi CD sebagai x. Panjang sisi BD merupakan hasil pengurangan panjang sisi BC oleh CD, yaitu a-x.
Dengan menggunakan teorema Pythagoras, maka bisa diperoleh dua persamaan tersebut. Dengan menggunakan aljabar, maka dapat menjabarkan bentuk (a-x)2.

Perhatikan kedua persamaan diatas, memuat x2+t2, yang diketahui sama dengan b2 dari persamaan 1. Substitusikan persamaan 1 ke persamaan 2.

Sekarang ganti x dengan bentuk yang memuat cos C. Dengan menggunakan segitiga ACD, maka dapat ditulis persamaan berikut dan menuliskan x dalam bentuk cos C.

Substitusikan persamaan 4 ke persamaan 3, maka diperoleh rumus aturan cosines:
c2 = a2 + b2 – 2ab cos C
Meski penurunan aturan cosinus dilakukan pada segitiga lancip, aturan ini juga berlaku pada segitiga tumpul. Selain itu, aturan cosinus juga bisa digunakan jika diketahui panjang 3 sisi segitiga atau panjang dua sisi segitiga dan besar sudut yang diapitnya (ss.ss.ss atau ss.sd.ss).
Contoh Soal dan Pembahasan Aturan Cosinus Segitiga Trigonometri
Contoh 1
Diketahui! Pada segitiga ABC, AB = 4 cm, BC = 6 cm dan AC = 7 cm. Nilai cos C = …
Jawab:

c2 = a2 + b2 – 2ab cos C
16 = 36 + 49 – 2.6.7 cos A
84 cos A = 69
cos A = 69/84
cos A = 23/28
Contoh 2 :
Diketahui! Pada jajaran genjang ABCD, ∠BAD = 60o. Jika AB = 16 cm dan AD = 10 cm maka panjang AC = …
Jawab :

Perhatikan gambar diatas!
∠BAC ≠ ∠CAD, sebab AB ≠ AD
Untuk mempermudah perhitungan tersebut, maka perpanjang garis AB

AC2 = AB2 + BC2 – 2 AB.BC cos 120°
AC2 = 162 + 102 – 2 16.10.(-1/2)
AC2 = 256 + 100 + 160
AC2 = 516
Contoh 3 :
Diketahui : Pada segitiga ABC, ∠A = 60o, AB = 7 cm, BC = √109 cm. Panjang AC = …
Jawab :

a2 = b2 + c2 – 2 bc cos 60o,
109 = b2 + 49 – 2.b.7.(1/2)
109 = b2 + 49 – 7b
b2 – 7b – 60 = 0
(b – 12)(b + 5) = 0
b = 12 atau b = -5
Jawaban yang memenuhi adalah AC = 12 cm
Demikian penjelasan tentang Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika . Semoga bermanfaat dan sampai jumpa pada postingan selanjutnya.
Artikel Paling Populer :
- Pengertian dan Jenis-Jenis Segitiga Mungkin Anda tidak asing dengan yang namanya segitiga. Contoh penerapan segitiga yang sering Anda jumpai adalah penggaris yang berbentuk segitiga. Apa sih sebenarnya segitiga itu? dan ada berapa jenis-jenis segitiga?…
- Menggunakan Konsep Turunan Dalam Menggambar Kurva Polinom Selamat datang pada blog carabelajarmatematika.com, pada artikel kali ini kita akan membahas mengenai Konsep Turunan Dalam Menggambar Kurva Polinom. Langsung saja kita bahas penjelasannya dibawah ini. Grafik fungsi merupakan gambaran sebuah geometri dari sebuah…
- Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan… Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan Contoh Soal Balok Beserta Cara Penyelesaian – Balok adalah bangun ruang 3 dimensi yang dibentuk oleh tiga pasang persegi atau persegi panjang dengan paling…
- Cara Menentukan dan Menghitung Rumus Luas dan Keliling… Mengetahui Rumus hitung Luas dan Keliling Pada Trapesium Lengkap dengan Contoh Soal dan Pembahasannya Trapesium merupakan bangun datar dua dmensi yang dibentuk oleh empat buah rusuk yang dua diantara rusuknya…
- Rumus Kerucut : Pengertian, Ciri, Sifat, Unsur dan Contoh… Rumus Kerucut : Pengertian, Ciri, Sifat, Unsur dan Contoh Soalnya Lengkap – Dalam matematika membahas tentang bangun ruang. Pengertian bangun ruang adalah sebuah penamaan atau sebutan untuk beberapa bangun-bangun yang berbentuk…
- Kubus – Unsur-Unsur Kubus, Jaring-Jaring, Rumus dan Contoh… Kubus – Unsur-Unsur Kubus, Sifat-Sifat Kubus, Jaring-Jaring, Rumus dan Contoh Soal Lengkap – Kubus adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang kongruen berbentuk bujur sangkar atau persegi. Ciri-ciri…
- Pengertian Bangun Ruang : Macam Macam Bangun Ruang,… Pengertian Bangun Ruang : Macam Macam Bangun Ruang, Penjelasan dan Rumusnya Lengkap – Dalam matematika membahas tentang bangun ruang. Apa itu bangun ruang? Agar lebih memahaminya, kita akan membahas tentang pengertian bangun…
- Prisma – Sifat, Unsur, Jaring-Jaring Prisma, Rumus Prisma… Prisma – Sifat, Unsur, Jaring-Jaring Prisma, Rumus (Luas Permukaan Prisma dan Volume Prisma) dan Contoh Soal Lengkap – Prisma adalah salah satu bentuk bangun ruang yang dibatasi oleh 2 bangun datar yang…
- Hubungan Panjang Sisi Dengan Besar Sudut Pada Segitiga sudah memposting cara mengetahui sebuah bangun berbentuk segitiga tanpa mengetahui atau melihat gambarnya dengan menggunakan konsep ketidaksamaan segitiga. Sekarang kita akan membahas mengenai bagaimana hubungan panjang sisi segitiga dengan besar sudut…
- Pengertian, Sifat Dan Rumus Sudut Pusat Dan Sudut Keliling… Sudut pusat dan sudut keliling lingkaran adalah sudut yang dibentuk oleh dua buah tali busur atau dua bua jari-jari pada lingkaran. Jika kalian belum mengetahui apa yang dimaksud dengan sudut…
- Rumus Luas dan Keliling Jajar Genjang Hi sobat rumushitung, jika mendengar nama jajar genjang, Apa yang sobat pikirkan? Tahukah sobat, apa jajar genjang itu?. Jajar genjang merupakan salah satu bangun datar yang memiliki ukuran pada tiap-tiap…
- Pengertian Ketidaksamaan Segitiga Sebelumnya Kami sudah membahas menganai pengertian dan jenis-jenis segitiga, sifat-sifat segitiga secara umum, dan juga sifat-sifat segitiga khusus (istimewa). Sekarang kita akan membahas bagaimana mengatahui suatu bangun tersebut berbentuk segitiga jika tidak…
- Mengenal Rumus Luas Belah Ketupat Seperti kalian ketahui, belah ketupat adalah jenis jajar genjang khusus memiliki semua sisi yang sama satu sama lain. Sebuah belah ketupat dapat dibedakan dari persegi melalui ukuran sudut internalnya. Sudut…
- Saat melakukan gaya ortodok atau jongkok yang mendarat… Saat melakukan gaya ortodok atau jongkok yang mendarat terlebih dahulu ialah... A. Tangan B. Lutut C. Kaki D. Kepala E. Siku-siku Jawaban : C. Kaki
- Pengertian, Sifat Dan Rumus Sudut Pusat Dan Sudut Keliling… Sudut pusat dan sudut keliling lingkaran adalah sudut yang dibentuk oleh dua buah tali busur atau dua bua jari-jari pada lingkaran. Jika kalian belum mengetahui apa yang dimaksud dengan sudut…
- Rumus Mencari Jari-jari lingkaran dan Contoh soal Pada kesempatan yang lalu, kita telah sama-sama belajar mengenai diameter lingkaran, Pada pembahasan kali ini juga akan masih berlanjut seputar lingkaran, yakni mengenai cara mencari jari – jari lingkaran. Mau…
- Keliling Segitiga: Rumus, Contoh Soal Jika didasarkan pada panjang sisi dan besar sudut, segitiga dibedakan menjadi beberapa macam. Menurut panjang sisinya dibedakan menjadi tiga jenis, yaitu segitiga sama sisi, segitiga sama kaki, dan segitiga sembarang.…
- Pengertian Pola Bilangan : Macam Jenis dan Contoh Pola… Pengertian Pola Bilangan : Macam Jenis dan Contoh Pola Bilangan Sebelum mempelajari barisan aritmatika dan barisan geometri, ada sub bab materi barisan bilangan atau bab yang perlu dipahami terlebih dahulu yaitu pola…
- Rumus Volume Kerucut Volume kerucut adalah jumlah ruang yang ditempati oleh kerucut. Kerucut memiliki alas berbentuk lingkaran, yang berarti alasnya terbuat dari jari-jari dan diameter. Kemudian dari bagian tengah alasnya sampai puncak kerucut…
- Pengertian, Sifat, Jenis, Rumus dan Contoh Soal Trapesium… Pengertian, Sifat, Jenis, Rumus dan Contoh Soal Trapesium Beserta Jawaban Lengkap – Trapesium adalah bangun datar dua dimensi tang dibentuk oleh 4 rusuk diantaranta saliung sejajar namun tidak sama panjang.…